應(yīng)用

技術(shù)

物聯(lián)網(wǎng)世界 >> 物聯(lián)網(wǎng)新聞 >> 物聯(lián)網(wǎng)熱點(diǎn)新聞
企業(yè)注冊(cè)個(gè)人注冊(cè)登錄

氮化鎵在射頻領(lǐng)域的優(yōu)勢(shì)盤點(diǎn)

2022-08-24 09:06 電子萬花筒

導(dǎo)讀:氮化鎵是一種二元III/V族直接帶隙半導(dǎo)體晶體,也是一般照明LED和藍(lán)光播放器最常使用的材料。

氮化鎵是一種二元III/V族直接帶隙半導(dǎo)體晶體,也是一般照明LED和藍(lán)光播放器最常使用的材料。另外,氮化鎵還被用于射頻放大器和功率電子器件。氮化鎵是非常堅(jiān)硬的材料;其原子的化學(xué)鍵是高度離子化的氮化鎵化學(xué)鍵,該化學(xué)鍵產(chǎn)生的能隙達(dá)到3.4 電子伏特。

半導(dǎo)體物理學(xué)中,“能隙”是指使電子游離原子核軌道,并且能夠在固體內(nèi)自由移動(dòng)所需的能量。能隙是一個(gè)重要的物質(zhì)參數(shù),它最終決定了固體所能承受的游離電子和電場的能量。氮化鎵的能隙是3.4 電子伏,這是一個(gè)比較大的數(shù)字。這就是為何氮化鎵被稱為“大能隙半導(dǎo)體”的原因。

相比之下,砷化鎵的能隙為1.4 電子伏,而硅的能隙只有1.1 電子伏。圖3-2:在柵極靠近漏極的邊緣位置發(fā)生機(jī)械性能退化。

在本章中,我們將向您介紹氮化鎵的基礎(chǔ)知識(shí),并且說明氮化鎵具有的哪些特性使其成為射頻功率放大器和其他高壓高頻應(yīng)用的理想材料。

氮化鎵基礎(chǔ)知識(shí)

鎵是一種化學(xué)元素,原子序數(shù)31。鎵并非自由存在于自然中。恰恰相反,鎵是鋅和鋁生產(chǎn)過程中的一種副產(chǎn)品。壓電效應(yīng)造成的材料結(jié)構(gòu)性能退化。

氮化鎵復(fù)合物由鎵和氮原子排列構(gòu)成,最常見的是纖鋅礦晶體結(jié)構(gòu)。纖鋅礦晶體結(jié)構(gòu)(圖1-1)是一種六邊形結(jié)構(gòu),其特征是有兩個(gè)晶格常數(shù)(圖中標(biāo)記為a 和 c)。

image.png

在半導(dǎo)體領(lǐng)域,通常在高溫條件下(大約1,100攝氏度),在異質(zhì)襯底上(對(duì)于射頻應(yīng)用,采用碳化硅作為襯底材料;對(duì)于功率電子器件應(yīng)用,則采用硅作為襯底材料),利用金屬有機(jī)化學(xué)蒸氣沉積或分子束外延技術(shù)生長氮化鎵。

碳化硅基氮化鎵方法綜合了氮化鎵的高功率密度能力,以及碳化硅的超高導(dǎo)熱性和低射頻損耗。正是因?yàn)檫@一點(diǎn),碳化硅基氮化鎵方法才成為實(shí)現(xiàn)高功率密度射頻性能的首選方法。今天,碳化硅基氮化鎵的襯底直徑可以達(dá)到6 英寸。

硅基氮化鎵組合的導(dǎo)熱性能要差很多,并且射頻損耗較高,但造價(jià)較為低廉。正是因?yàn)檫@一點(diǎn),硅基氮化鎵組合才成為低成本功率電子器件應(yīng)用的首選方法。今天,硅基氮化鎵的襯底直徑可以達(dá)到8英寸。

為何氮化鎵性能優(yōu)于其他半導(dǎo)體材料

盡管與硅和砷化鎵等其他半導(dǎo)體材料相比,氮化鎵是相對(duì)較新的技術(shù),但是對(duì)于遠(yuǎn)距離信號(hào)傳送或高端功率級(jí)別等(例如,雷達(dá)、基站收發(fā)臺(tái)、衛(wèi)星通信、電子戰(zhàn)等)高射頻和高功率應(yīng)用,氮化鎵已經(jīng)成為優(yōu)先選擇。

碳化硅基氮化鎵在射頻應(yīng)用中脫穎而出的原因如下:

1

高擊穿電場:

由于氮化鎵擁有大能隙,因此氮化鎵材料也擁有高擊穿電場,所以氮化鎵器件的工作電壓可以遠(yuǎn)高于其他半導(dǎo)體器件。當(dāng)受到足夠高的電場影響時(shí),半導(dǎo)體中的電子能夠獲得足夠動(dòng)能并脫離化學(xué)鍵(這一過程被稱為“碰撞電離”或“電壓擊穿”)。如果碰撞電離沒有得到控制,則能夠造成器件性能退化。由于氮化鎵能夠在較高電壓下工作,因此能夠用于較高功率的應(yīng)用。

2

高飽和速度:

氮化鎵的電子擁有高飽和速度(非常高的電場下的電子速度)。當(dāng)結(jié)合大電荷能力時(shí),這意味著氮化鎵器件能夠提供高得多的電流密度。

射頻功率輸出是電壓與電流擺幅的乘積,所以,電壓越高,電流密度越大,在實(shí)際尺寸的晶體管中產(chǎn)生的射頻功率越大。簡單而言,氮化鎵器件產(chǎn)生的功率密度要高得多。

3

突出的熱屬性:

碳化硅基氮化鎵表現(xiàn)出不同一般的熱屬性,這主要因?yàn)樘蓟璧母邔?dǎo)熱。具體而言,這意味著在功率相同的情況下,碳化硅基氮化鎵器件的溫度不會(huì)變得像砷化鎵器件或硅器件那樣高。器件溫度越低才越可靠。

什么是壓電性,壓電性為何重要?

氮化鎵有壓電性?!皦弘姟笔莻€(gè)獨(dú)出心裁的詞,意思是在壓力作用下產(chǎn)生的電能。

“壓電”一詞分別源自希臘語“piezein”(意思是“擠壓”)和“electric”或“electron”(意思是“琥珀色”?古人認(rèn)識(shí)的電荷)。

氮化鎵有壓電性,這是因?yàn)榈壍逆I是離子化的,還因?yàn)殒壴雍偷拥倪B續(xù)平面間距并不一致(參見圖1-2)。當(dāng)我們擠壓一個(gè)平面上的原子時(shí),上方和下方平面的原子移動(dòng)不同距離,形成凈電荷、電場和電壓。

現(xiàn)在,您知道了為何氮化鎵有壓電性,您可能感到奇怪:為何氮化鎵的壓電屬性這么重要。氮化鎵的壓電性導(dǎo)致了氮化鎵晶體管的電子溝道產(chǎn)生的部分電荷。壓電性還造成了晶體管的部分退化模式。

我們常用的部分消費(fèi)電子器件(例如,智能手機(jī))每天都在使用壓電屬性。體聲波和聲表面波濾波器(Qorvo生產(chǎn)的濾波器數(shù)量以百萬計(jì))使用的壓電襯底是智能手機(jī)實(shí)現(xiàn)多頻帶功能的關(guān)鍵元件。

image.png

氮化鎵的高功率密度優(yōu)勢(shì)

如前所述,碳化硅基氮化鎵是一種高射頻功率密度的半導(dǎo)體。在場效應(yīng)管中,功率密度通常單位是W/mm,這是因?yàn)楣β逝c柵長而不是柵面積成一定比例。顯然,如果功率密度較高,則意味著使用較少數(shù)量的器件就可獲得較高的功率,所以在功率需求一定的情況下,可以縮小器件體積。

現(xiàn)在,器件體積的減小并不僅僅表示材料成本的降低。小尺寸器件還意味著:

(1)降低電容:電路設(shè)計(jì)人員能夠設(shè)計(jì)帶寬更寬的放大器。

(2)減少組合損耗:您可以獲得更高的效率和增益,最終還將獲得更高的功率。

今天的移動(dòng)通信基礎(chǔ)設(shè)施和高級(jí)軍事系統(tǒng)(例如,相控陣?yán)走_(dá)、通信和電子戰(zhàn))都需要高頻率、高帶寬、高功率和高效率的器件。這些應(yīng)用也正是氮化鎵能夠脫穎而出的地方。