技術(shù)
導(dǎo)讀:在終端和邊緣側(cè)的微處理器上,實(shí)現(xiàn)的機(jī)器學(xué)習(xí)過程,被稱為微型機(jī)器學(xué)習(xí),即TinyML。更準(zhǔn)確的說,TinyML是指工程師們?cè)趍W功率范圍以下的設(shè)備上,實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法、工具和技術(shù)。這篇文章,我們來一起探索TinyML的潛在價(jià)值和機(jī)會(huì)。
導(dǎo)讀
在終端和邊緣側(cè)的微處理器上,實(shí)現(xiàn)的機(jī)器學(xué)習(xí)過程,被稱為微型機(jī)器學(xué)習(xí),即TinyML。更準(zhǔn)確的說,TinyML是指工程師們?cè)趍W功率范圍以下的設(shè)備上,實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法、工具和技術(shù)。這篇文章,我們來一起探索TinyML的潛在價(jià)值和機(jī)會(huì)。
全文字?jǐn)?shù):2900字,寫作用時(shí):300分鐘,閱讀時(shí)間:10分鐘
物女皇:TinyML,很小卻很大
這是我在【物女心經(jīng)】專欄寫的第268篇文章。
一根手指代表“播放??”,兩根手指代表“暫停?”,三根手指代表“停止?”…這種遙控“神功”逐步變成現(xiàn)實(shí),并且這項(xiàng)技術(shù)正在賦能越來越多的傳感器。
TinyML,微型機(jī)器學(xué)習(xí),我曾在之前的文章《一文讀懂即將引爆的TinyML:在邊緣側(cè)實(shí)現(xiàn)超低功耗機(jī)器學(xué)習(xí)》中做過重點(diǎn)介紹。在終端和邊緣側(cè)的微處理器上,實(shí)現(xiàn)的機(jī)器學(xué)習(xí)過程,被稱為微型機(jī)器學(xué)習(xí),即TinyML。更準(zhǔn)確的說,TinyML是指工程師們?cè)趍W功率范圍以下的設(shè)備上,實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法、工具和技術(shù)。
在智能時(shí)代,我們常說萬物皆智,但是如何賦予數(shù)以億計(jì)、超小體積、極低功耗的設(shè)備以智能,這是不得不解決的挑戰(zhàn)。
好在疫情期間,很多傳感器企業(yè)并沒有減緩研發(fā)的腳步。索尼、三星和博世等企業(yè)都正嘗試在不增加部件、提升成本和功耗的前提下,為傳感器嵌入更多的智能。TinyML與傳感器的結(jié)合,讓這些探索開花結(jié)果。
根據(jù)研究機(jī)構(gòu)ABI Research的判斷,一旦開啟億萬量級(jí)的微型設(shè)備智能化之旅,市場(chǎng)空間將是巨大的。ABI由此預(yù)測(cè)到2022年底TinyML即服務(wù)的收入將超過2.2億美元,并從2025年起,TinyML將成為智能時(shí)代的重要組成部分之一。
躺平不可取,手握如此機(jī)遇,怎能坐失良機(jī)?10月20日,參與創(chuàng)造TinyML一詞、創(chuàng)建TinyML峰會(huì)、編寫了TinyML教科書的谷歌TensorFlow Micro團(tuán)隊(duì)前技術(shù)負(fù)責(zé)人皮特(Pete Warden),發(fā)文認(rèn)為市場(chǎng)時(shí)機(jī)已經(jīng)成熟,宣布二次創(chuàng)業(yè),作為創(chuàng)始人投身于TinyML賦能的智能傳感公司。
這篇文章,我們來一起探索TinyML的潛在價(jià)值和機(jī)會(huì)。
用TinyML做爆款智能硬件
一個(gè)售價(jià)為10美元(約合人民幣72.5元)的硬件模塊,可以嵌入電視、風(fēng)扇、遙控器、無人機(jī)、攝像頭等設(shè)備中,輕松實(shí)現(xiàn)智能功能。電視可以根據(jù)主人的手勢(shì)實(shí)現(xiàn)遙控、風(fēng)扇可以判斷主人的位置對(duì)準(zhǔn)送風(fēng)、攝像頭可以自動(dòng)識(shí)別房間里的人員數(shù)量…這就是皮特的新創(chuàng)公司Useful Sensors正在做的事情。
此前皮特在谷歌帶領(lǐng)機(jī)器學(xué)習(xí)基礎(chǔ)架構(gòu)團(tuán)隊(duì)長(zhǎng)達(dá)7年,并且創(chuàng)建了TensorFlow Lite Micro,一個(gè)用于嵌入式系統(tǒng)的機(jī)器學(xué)習(xí)框架。
過去幾年他一直在思考,“聯(lián)網(wǎng)”能力是否是物聯(lián)網(wǎng)設(shè)備的必選項(xiàng)?如果將“Internet”從Internet of Things中拿掉將會(huì)怎樣?如何賦予沒有接入網(wǎng)絡(luò)的設(shè)備以智能?
從2022年開始,他率隊(duì)秘密研發(fā)這款名為Person Sensor的智能模塊,尺寸為20 x 20毫米,正面有一個(gè)攝像頭,背面是微控制器。這個(gè)只有硬幣大小的模塊可以檢測(cè)附近的人臉信息,反饋人數(shù)、相對(duì)位置,并進(jìn)行面部辨識(shí)。
皮特認(rèn)為有智慧的傳感器才是真正有用的傳感器,智能分析與傳感器的距離越近,就越能降低功耗,而且這種功耗的節(jié)約是指數(shù)量級(jí)的,輕松實(shí)現(xiàn)10倍改善。
過去,我們可能會(huì)遇到對(duì)著臺(tái)燈說“關(guān)上”,但臺(tái)燈毫無響應(yīng)的情況,但是這種日子即將一去不復(fù)返了,一些家電企業(yè)開始著手在電燈、音箱和電腦中嵌入這種智能模組。
TinyML:不用聯(lián)網(wǎng)卻“始終在線”的ML
在文章《專為物聯(lián)網(wǎng)而生的TinyML,正在開啟音頻分析的新藍(lán)?!分校以?jīng)提到TinyML微型機(jī)器學(xué)習(xí)是機(jī)器學(xué)習(xí)和物聯(lián)網(wǎng)設(shè)備的交集,它是一門新興的工程學(xué)科,有可能在許多行業(yè)引發(fā)革命。
目前全球有千億量級(jí)的微控制器在各地運(yùn)行,而且每年仍在以數(shù)百億的量級(jí)遞增,根據(jù)IC Insights預(yù)測(cè),到2023年微控制器的年出貨量將超過380億個(gè),而且這些微控制器對(duì)應(yīng)的設(shè)備,都有變得越來越智能的需求。
換句話說,未來分布在煙霧傳感器、心臟起搏器、車載終端中的2500億個(gè)微控制器,有可能可以執(zhí)行以前只有計(jì)算機(jī)和智能手機(jī)才能處理的任務(wù)。因此面對(duì)位于網(wǎng)絡(luò)邊緣的海量物聯(lián)網(wǎng)設(shè)備,TinyML的未來發(fā)展具有極大的想象空間。
這些內(nèi)嵌于物聯(lián)網(wǎng)終端設(shè)備中的“TinyML即服務(wù)”,“主動(dòng)”參與智能決策與執(zhí)行,并且允許在終端設(shè)備資源非常有限、聯(lián)網(wǎng)受限的情況下,仍舊持續(xù)提升終端設(shè)備的分析能力,以便其能更好的處理實(shí)時(shí)物聯(lián)網(wǎng)數(shù)據(jù)。
由此,TinyML在物聯(lián)網(wǎng)終端打造的飛輪不斷提速:
更低成本、更佳反饋的TinyML→更多數(shù)據(jù)反哺模型訓(xùn)練和調(diào)參→更好的使用體驗(yàn),吸引更多企業(yè)參與其中。
TinyML的市場(chǎng)規(guī)模比邊緣ML和云端ML都要大。除了文初提到的ABI Research,多家分析機(jī)構(gòu)均給出TinyML的樂觀預(yù)測(cè)。根據(jù)Silent Intelligence的預(yù)測(cè),在未來5年,TinyML將觸發(fā)超過700億美元的經(jīng)濟(jì)價(jià)值,并且保持超過27.3%的復(fù)合年均增長(zhǎng)率(CAGR)。
由TinyML改寫的游戲規(guī)則
從某種程度上說,TinyML改寫了機(jī)器學(xué)習(xí)的“游戲規(guī)則”。
TinyML和我們常常提到的機(jī)器學(xué)習(xí),也就是基于云端的ML,處于兩個(gè)截然不同的世界。
當(dāng)CPU、內(nèi)存與操作系統(tǒng)之間的差異達(dá)到一定程度之后,量變引發(fā)質(zhì)變。與TinyML可以調(diào)用的資源相比,云端ML簡(jiǎn)直是“富豪”。為了順利推進(jìn),TinyML必須采用與云端ML不同的思維模式。
因禍得福,云端ML常常被詬病的四大痛點(diǎn)問題:功耗大、延遲長(zhǎng)、需聯(lián)網(wǎng)、少隱私等問題,在TinyML這里統(tǒng)統(tǒng)不存在,反而成為使用TinyML的4個(gè)主要優(yōu)點(diǎn):
保護(hù)隱私:由于聯(lián)網(wǎng)并不是TinyML工作的前提條件,數(shù)據(jù)可以被保存在沒有連接網(wǎng)絡(luò)的設(shè)備中,因此數(shù)據(jù)被泄露的風(fēng)險(xiǎn)非常低。這剛好滿足了大量用戶的需求,很多最終用戶非常在意數(shù)據(jù)隱私,在數(shù)據(jù)開放與共享方面保持謹(jǐn)慎態(tài)度。他們不愿意將自己的數(shù)據(jù)交由第三方云平臺(tái)和邊緣服務(wù)提供商,進(jìn)行存儲(chǔ)和管理。面對(duì)這項(xiàng)需求,TinyML很好的保護(hù)了數(shù)據(jù)隱私。
超低功耗:分布最廣的物聯(lián)網(wǎng)設(shè)備往往體積很小、電量有限。它們被作為終端硬件,通過嵌入式傳感器采集各種數(shù)據(jù);計(jì)算能力有限,對(duì)功耗極為敏感。許多物聯(lián)網(wǎng)設(shè)備都是電池供電,對(duì)于功耗的要求很高。通過極低功耗TinyML的數(shù)據(jù)分析,減少網(wǎng)絡(luò)傳輸?shù)臄?shù)據(jù)量,可以在一定程度上,節(jié)約物聯(lián)網(wǎng)終端中的電量消耗。
無需連接:設(shè)備不需要Internet連接即可讓TinyML模型工作。在偏遠(yuǎn)地區(qū)、海上平臺(tái)、空間站、極端環(huán)境的應(yīng)用中,網(wǎng)絡(luò)通信有可能無法保證始終覆蓋,另外還有很多物聯(lián)網(wǎng)設(shè)備通過窄帶物聯(lián)網(wǎng)NB-IoT或者其他低功耗廣域物聯(lián)網(wǎng)通信協(xié)議與網(wǎng)絡(luò)通信,帶寬和數(shù)據(jù)傳輸能力極為有限,這些設(shè)備有強(qiáng)烈的在本地處理數(shù)據(jù)的需求,以減少數(shù)據(jù)的傳輸,降低網(wǎng)絡(luò)帶寬和傳輸功耗的壓力,避免在終端和邊緣設(shè)備之間形成帶寬瓶頸,影響整套物聯(lián)網(wǎng)解決方案的性能。
極低延遲:TinyML可以以極低延遲處理數(shù)據(jù)。TinyML通過將某些機(jī)器學(xué)習(xí)任務(wù)轉(zhuǎn)移到設(shè)備本身,來進(jìn)一步減少網(wǎng)絡(luò)延遲的可能性。TinyML允許在不連接任何服務(wù)器的情況下進(jìn)行分析,物聯(lián)網(wǎng)設(shè)備可以實(shí)時(shí)處理數(shù)據(jù)并及時(shí)輸出。
很多公司開始嘗試將TinyML應(yīng)用于各種場(chǎng)景,最普遍的應(yīng)用是設(shè)備上的喚醒詞檢測(cè)、人數(shù)統(tǒng)計(jì)和人員檢測(cè)。還有一些公司嘗試將TinyML用于機(jī)器聽覺。
和視覺信息一樣,聲音無處不在。語音啟動(dòng)的設(shè)備,在智能家居的應(yīng)用中非常常見,最典型的比如智能音箱。還有很多聲音,比如機(jī)床震動(dòng)的聲音、車輛拋錨的聲音、報(bào)警器鳴響的聲音…這些聲音不同于語音,沒有語言模型。
過去我們極大的發(fā)展了機(jī)器視覺,現(xiàn)在我們正在賦予機(jī)器聽覺。隨著越來越多的物聯(lián)網(wǎng)企業(yè)正在將分析的重點(diǎn)從視頻轉(zhuǎn)移到音頻,TinyML正在開啟一片新的藍(lán)海。
寫在最后
TinyML賦予千億終端設(shè)備以智能,是我們值得關(guān)注的確定性機(jī)會(huì)之一,但它并不是全部,還有很多商機(jī)有待我們一起挖掘。
參考資料:
1.Launching Useful Sensors!,作者:Pete Warden,來源:PETE WARDEN'S BLOG
2.Former Googler creates TinyML sensor startup,作者:STACEY HIGGINBOTHAM,來源:staceyoniot.com
3.ABI Research predicts the growing importance of TinyML SaaS,來源:FutureIoT